जल इंजीनियरी

Submitted by Hindi on Fri, 08/12/2011 - 10:58
जल इंजीनियरी अथवा द्रव इंजीनियरी (Hydraulics) के अंतर्गत इंजीनियरी के उप तत्वों का विचार आ जाता है जिनके अंतर्गत जल, वायु तथा तैल और अन्य रासायनिक विलयनों का उपयोग प्राकृतिक दशा में या दबाव के अंदर होता है। इन द्रवों के प्राकृतिक लक्षणों का, जैसे धनत्व, श्यानता, प्रत्यास्थता गुणधर्म और तलतनाव आदि, के ऊपर इंजीनियरी के समस्त अभिकल्प निर्भर होते हैं, क्योंकि सारे द्रवों का आधारभूत व्यवहार एक सा ही होता है। किंतु यहाँ जल से संबंधित इंजीनियरी का ही विशेष विवरण दिया जा रहा है।

जल इंजीनियरी के संबंध में सर्वप्रथम जल के स्थायी दबाव का अध्ययन आवश्यक होता है। यह स्थायी दबाव का विषय द्रवस्थिति विज्ञान (Hydrostatics) कहलाता है। जब जल में किसी प्रकार की गति आ जाती है, तो समस्या जटिल हो जाती है। अन्यान्य द्रवों की भाँति जल की भी यह विशेषता होती है कि वह पृथ्वी के गुरुत्व के कारण स्वयं चालक हो जाता है और यह गुण स्थिति के अनुकूल घटता बढ़ता रहता है। इंजीनियर की विचारतुलना गणितज्ञ की विचारतुलना से इस संबंध में भिन्न हो जाती है। गणितज्ञ बहुत सी बातों का निदान काल्पनिक परिस्थितियों पर निर्भर रहकर करते हैं। इंजीनियरों के विचार में वास्तविक स्थितियों पर निर्भर रहकर करते हैं। इंजीनियरों के विचार में वास्तविक स्थितियों का जल संबंधी समस्याओं पर बड़ा प्रभाव पड़ता है। इन समस्याओं को सुलझानेमें बहुत से ऐसे आधारभूत तथ्यों की गणना की जाती है, जैसे ऊर्जा अविनाशिता, सामग्री का संरक्षण, परिवलन का संरक्षण इत्यादि। जल इंजीनियरी का कोई भी प्रश्न हो, वह इनमें से दो आधारभूत तथ्यों पर अवश्य ही निर्भर होगा।

स्विस इंजीनियर, डेनियल बर्नुली (Daniel Bernoulli) ने 18वीं शताब्दी में यह प्रतिपादित किया था कि गति मार्ग में किसी भी द्रव के कणों में ऊर्जा समान रहती है अथवा गति ऊर्जा (Kinetic energy) और स्थितिज ऊर्जा (Potential energy) का योग एक ही होता है। एतदर्थ उसने निम्नांकित समीकरण निर्धारित किया था:

इस समीकरण से बहुत सी समस्याओं का समाधान हो जाता है। उदाहरण के लिये एक पपं एक घनफुट पानी प्रति सेंकड निकालता है। उसके एक सिरे पर पानी का वेग 10 फुट प्रति सेकंड है और दूसरी ओर पानी का वेग 20 फुट प्रति सेकंड है, पहले सिरे पर वेग का दबाव 1.56 फुट है और दूसरे सिरे पर 6.24 फुट है। चित्र 1. में ये बातें प्रदर्शित की गई हैं। बर्नुली के समीकरण से 'क' और 'ख' की स्थिति इस प्रकार निकलती है :

आ (Z) 0 0 अक्षर पर आधार रेखा (datum hire along axis)
व (H)  6  40
 व (H)  4.44 46.24
 व (H) 50.68 फुट

अत: पंप द्वारा पानी के ऊपर अतिरिक्त दबाव 50.68 फुट डाला गया। माप 46 फुट ही दिखाई पड़ती है, क्योंकि बाकी का दबाव वेग दबाव में परिवर्तित हो गया। बर्नुली के तथ्य से बहुत सी समस्याओं का समाधान हो जाता है।

पानी के बहाव में और भी बहुत सी बातों का निदान करना पड़ता है, जैसे छोटे बड़े निकासों से पानी का विरतण, निकास मार्ग के संकुचित होने से बहाव की स्थिति में घटाव-बढ़ाव, निकास मार्ग की बनावट तथा उसके आकार का जलनिस्सरण पर प्रभाव, निकसा मार्ग में छोटे बड़े भँवर पैदा हो जाना, इन सब बातों का लगाव नहरों के लिये, या जल-प्रसादन-केंद्रों में जलवितरण के लिये किए गए साधनों पर होता है। नहरों में इन बातों पर विचार करके ही बड़े बड़े कार्यों के अभिकल्प बनाए जाते हैं।

वास्तव में जल इंजीनियरी में ऐसी बहुत सी बातों का समन्वय होता है जिनका गणित के द्वारा समाधान होना संभव नहीं। अत: बहुत सी समस्याओं का समाधान छोटे प्रतिरूप (model) अर्थात्‌ छोटे आकार के नमूने बनाकर किया जाता है। इन नमूनों या मॉडलों में पानी प्रवेश कराकर और उसकी चाल को मापकर यह बात निर्धारित की जाती है कि विभिन्न अभिकल्पों से बनाए कार्यों पर पानी के व्यावहारिक बहाव से क्या प्रभाव पड़ेगा। इन प्रयोगों से यही अनुमान किया जा सकता है कि कितने पानी के दबाव से अथवा कितनी मात्रा में पानी के बहावसे, किसी विशेष अभिकल्प से बनाया गया कार्य स्थिरता से डिगने लगता है अथवा स्थिर हो जाता है। वैसे तो जल संबंधित कार्यों का निर्माण द्रव इंजीनियरी के मूल सिद्धांतों पर ही निर्भर होता हे, किंतु उन कार्यों की व्यावहारिक सुचारुता एवं संपन्नता और स्थिरता का ठीक अनुमान मॉडल के प्रयोग द्वारा किया जाता है। नाविक कार्य में जहाँ बड़े बड़े जहाज बनाए जाते हैं, छोटे छोटे मॉडलों द्वारा जहाजों की कार्यक्षमता एवं यातायात योग्यता का अनुमान किया जाता है।

पानी के बहाव में घर्षण द्वारा बहुत से दबाव का क्षय (friction loss) होता है। इसी कारण बहुधा ऊँचे या दूरी पर स्थित स्थलों पर जलप्रदाय साधनों में पानी अनुकूल दबाव से नहीं निकल पाता। वैसे खुली नहरों में भी घर्षण द्वारा दबाव का क्षय होता है। जल इंजीनियरी द्वारा इस प्रकार बहुत से साधन प्रस्तुत किए जाते हैं कि दबाव का क्षय कम से कम हो। इसलिये पानी के मार्गो को पक्का या चिकना करने के साधन उपयोग में लाए जाते हैं। नालिकाओं में जहाँ जोड़ या मोड़ आते हैं अथवा नालिका जहाँ बड़ी से छोटी होती है वहाँ दबाव का क्षय होता है। दबाव के इस क्षय का अनुमान बर्नुली के समीकरण द्वारा किया जा सकता है।

बड़े बड़े तालाबों या जलाशयों में अथवा विशेष कार्यों की पूर्ति में भूगर्भ में सर्पण द्वारा पानी का क्षय होता है। इसके लिये भी जल इंजीनियरी के सिद्धांतों द्वारा ऐसे साधन जुटाए जाते हैं जिनसे या तो सर्पण बिल्कुल बंद हो जाय अथवा संर्पण द्वारा पानी इतने ही सेग से बहे, जिससे भूमि के कण हटने न पाएँ। यदि भूमि के कण हटने लगते हैं तो परिणाम यह होता है कि अभिकल्प पर आधारित कार्य के अंदर पोल होती रहती है और कार्य की स्थिरता जोखिम में पड़ जाती है। इस बात का प्रदर्शन में किया गया है।

इस संबंध में बहुत सा कार्य भिन्न भिन्न देशों में हो चुका है। बिलाई द्वारा निर्धारित 'सर्पण' सिद्धांत (Creep theory) पर आधारित बहुत से काम बनाए गए हैं। इस सिद्धांत का मूल यह था कि यदि संर्पण का मार्ग लंबा कर दिया जाय तो उससे निकास का वेग कम हो जायगा। इसके बाद भारतीय इंजीनियर खोसला ने एक और तथ्य घोषित किया, जिसके आधार पर बहुत से काम बनाए गए।

जल इंजीनियरी का महत्वपूर्ण क्षेत्र बड़े बड़े बाँध तथा नदियों में रोक या बाराज (barrage) बनाने का है। जहाँ पानी संचित करने के लिये बांध बनते हैं, वहाँ बांधों की स्थिरता जाँचने के लिये बड़ी खोज करनी पड़ती है। साधारणत: जितना ऊँचा बाँध हो उसकी एक तिहाई तल की चौड़ाई होनी चाहिए। इसके निमित्त जा गणित-रेखा-निदान किया जाता है उसका प्रदर्शन चित्र 3. में अंकित है। यह साधारण भू-आकर्षण पर स्थित कंक्रीट (concrete) बांध का अभिकल्प है। इन अभिकल्पों में पानी के भार के अतिरिक्त लहरों का प्रभाव, भूकंप का प्रभाव, हवा का प्रभाव तथा अन्य बहुत सी बातें भी सोचनी पड़ती हैं। फिर, आजकल व्यय में बचत को ध्यान में रखते हुए ये बाँध भी विविध प्रकार से बनने लगे हैं और बाँध का निर्माण जल इंजीनियरी की विशेष शाखा बन गई है। एक नए बाँध के अभिकल्प का कुछ ज्ञान चित्र 4. से हो सकेगा। इस बाँध को विशेष रूप से बनाया गया है और बहुत सी नई खोजों का इसमें प्रयोग किया गया है।

जब जल बहुत अधिक दबाव में निकलता है तब उसी कटान की क्षमता बहुत बढ़ जाती है। बड़ी बड़ी चट्टानें उसके कारण कट जाती हैं। अत: बड़े बड़े बाँधों पर अतिरिक्त जल की निकासी की समस्या बड़ी विकट होती है। उसके निकास स्थल को विशेष रूप से पक्का बनाया जाता है। कहीं कहीं तो जल में निर्मित शक्ति को व्यय करने के लिये गोलाकार तसले की सी शक्ल बनानी होती है। इस प्रकार नीचे गिरकर जल कुछ ऊपर उठता है और उसमें निर्भित शक्ति का ह्रास हो जाता है, जैसा चित्र 5. में प्रदर्शित है। इसके उपरांत उस जल की कटानक्षमता कम हो जाती है। अन्य बहुत से साधन जल में निर्मित शक्ति को व्यय करने के लिये उपयोग में लाए जाते हैं।

जल इंजीनियरी की एक विशेष युक्ति साधारण पनचक्की से सबंधित है। यही युक्ति प्रगति पाकर पनबिजली के उत्पादन में लगती है। इसके द्वारा जल के दबाव से पनबिजली के जनित्र (generator) को घुमाया जाता है। इसके चालित होने से बिजली बनने लगती है। उसके दो प्रतिरूप हैं। एक तो वह जहाँ टरबाइन के घूमनेवाले पंखे ऐसे होते जो सर्वथा पानी के दबाव के अंदर ही घूमते हैं। इनको प्रतिक्रिया टरबाइन कहा जाता है। जहाँ पानी की मात्रा अधिक होती है वहां इनका प्रयोग विशेषकर होता है। दूसरे प्रकार के टरबाइन आवेग टरबाइन (Impulse turbine), यानी चोट खाकर चलनेवाले टरबाइन होते हैं। इनमें पानी की धार से लगकर टरबाइन का पहिया घूमता है और वह जनित्र को घुमाता है जिससे बिजली उत्पन्न होती है। इसका कुछ अनुमान चित्र 6 से हो सकेगा।

इंजीनियरी के क्षेत्र में जल इंजीनियरी का स्थान महत्वपूर्ण है। उद्योग के क्षेत्र में जल का बड़ा उपयोग होता है। भारी से भारी दबाव उत्पन्न करने के लिये जलप्रेरित प्रेस काम में लाए जाते हैं। इन्हें द्रवचालित प्रेस कहते हैं। इन प्रेसों का विस्तार बड़े से बड़ा हो सकता है। जल की भाप बनाकर उससे बड़े बड़े इंजन चलाए जाते हैं। रेलगाड़ी का इंजन जल की भाप से ही चलता है। यद्यपि यह जल इंजीनियरी का पूर्ण क्षेत्र नहीं है, तथापि भाप और जल लगभग एक ही सिद्धांत पर नियंत्रित होते हैं क्योंकि दोनों ही तरल अवस्था में रहते हैं। जल या भाप में जितना अधिक दबाव होता है उसी मात्रा में उनमें शक्ति संचित होती है। चाहे दबाव प्राकृतिक ऊँची स्थिति के कारण हो अथवा कृत्रिम साधनों द्वारा उत्पन्न किया गया हो।

जल के दबाव के कारण ही कहीं कहीं जल के जेटों द्वारा बहुत से काम किए जाते हैं। बहुत से नगरों में सफाई आदि के लिये पानी के जेटों का प्रयोग किया जाता है। इस प्रकार के दबाव से खेती बारी में भी बौछार (sprinkler) द्वारा पानी का वितरण किया जाता है और एक प्रकार की वर्षा की जाती है। वैज्ञानिक रूप से अत्यधिक दबाव पैदा करके पानी की धार में इतनी शक्ति पैदा कर दी जाती है कि वह बड़ी बड़ी चीजों को काट भी सकती है। यथेष्ट दबाव द्वारा यह धार स्टील की परतों तक को भी काटने की क्षमता रखती है। उसके लिये लगभग 10,000 पाउंड प्रति वर्ग इंच का दबाव आवश्यक होता है।

जल की माप आदि भी जल इंजीनियरी का महत्वपूर्ण अंग है। साधारणत: पाइपों में पानी की माप जल मीटरों से हो जाती है, किंतु नहरों में तथा नदियों में पानी की माप के लिये भिन्न भिन्न साधनों का उपयोग किया जाता है। विज्ञान की प्रगति के साथ साथ नए नए तरीके पानी की माप के लिये निकाले जा रहे हैं। यह विषय इसलिए और भी महत्वपूर्ण हैं कि अंतरराष्ट्रीय जल-विभाजन-संधियों में अथवा अंतरप्रादेशिक जलवितरण में पानी की ठीक माप द्वारा ही जल का उचित रूप से विभाजन हो सकता है। इसलिये द्रव में विलयन मिलाकर अवमिश्रण विधि (dilution method) से अथवा अन्य साधनों से पानी की मात्रा का परिमापन किया जाता है। साधारणत: विशेष स्थानों पर स्वत: माप-अभिलेखक (Automatic guage recorder) लगा दिए जाते हैं जिनसे पानी की माप का लेखन स्वत: चालित मशीन द्वारा हो जाता है।

जल इंजीनियरी के और भी बहुत से विशेष अंग हैं जिनका विवरण उन विशेष अंगों के अंतर्गत मिल सकता है। जल इंजीनियरी में मुख्यत: जल का स्थिर दबाव, उसकी गति तथा उसका प्रभाव, उसके द्वारा चालित यंत्र जल का मापन आदि विषयों का विचार आ जाता है, जिनके संबंध में केवल परिचयात्मक विवरण ऊपर दिया गया है। ( बालेवर नाथ)

Hindi Title


विकिपीडिया से (Meaning from Wikipedia)




अन्य स्रोतों से




संदर्भ
1 -

2 -

बाहरी कड़ियाँ
1 -
2 -
3 -