प्रकाश का वेग (Velocity of light) आज के लगभग 300 वर्ष पहले यह गलत धारणा थी कि प्रकाश का वेग अनंत होता है, अर्थात् उसे एक स्थान से दूसरे स्थान पहुँचने में कुछ भी समय नहीं लगता। सर्वप्रथम सितंबर, सन् 1676 में रोमर ने इस गलत धारणा को दूर कर यह बताया कि प्रकाश का वेग बहुत अधिक होने पर परिमित होता है। बृहस्पति के उपग्रहों के ग्रहणों के अंतर काल में पृथ्वी से संबंधित दूरी के बदलने से होनेवाले परिवर्तन का अध्ययन कर, रोमर ने प्रकाश को पृथ्वी की कक्षा के व्यास को पार करने में लगनेवाले काल को निकाला। पृथ्वी की कक्षा के व्यास को मालूम कर, उसने प्रकाशवेग का मान मालूम किया, जो 2,14,300 किलोमीटर प्रति सेकंड के बराबर ज्ञात हुआ। उन दिनों की विज्ञान की प्रगति को देखते हुए यह अत्यंत प्रशंसापूर्ण कार्य था।
प्रकाश के वेग का ठीक ठाक मान निकालना एक अत्यंत महत्वपूर्ण कार्य है, क्योंकि यह चुंबकीय एवं विद्युतीय घटनाओं का एक अभिन्न अंग है। जितने भी ऊर्जा के संचार के कार्य हैं, उनमें इसका उपयोग होता है। इन 300 वर्षो में प्रकाशवेग नापने के इतने भिन्न भिन्न प्रयत्न हुए हैं कि हम कह सकते हैं कि इसका मान 1/100 प्रति शत यथार्थता तक मालूम हो गया है।
प्रकाशवेग का, जिसके लिये ड़ चिह्न प्रयुक्त होता है, सही मान है 2,99,793.0±0.3 किमी. प्रति सेंकंड। स्थूल रूप से इसे 3 X1010 सेंमी. प्रति सेंकंड मान लिया जाता है।
एकवर्णी तरंग के वेग को कलावेग (Phase velocity) कहते हैं। यथार्थ में श्वेत प्रकाश एकवर्णी न होकर कई प्रकार की तरंगों से बनता है। यह झुंड जिस वेग से चलता है, उसे समूह वेग (Group velocity) कहते हैं। प्रकाश के वेग नापने की प्रत्यक्ष विधियाँ साधारणतया समूहवेग ही नापती हैं।
प्रकाश की तीव्रता का उसके वेग पर प्रभाव- 1904 ई. में डाउट ने तीव्रता को 1: 3,00,000 के अनुपात में बढ़ाकर बताया कि विभिन्न प्रकाशों के वेग में परिवर्तन 6 मिमी. प्रति सेकंड से भी कम होता है। यह नगण्य है।
तरंगदैर्ध्य का प्रभाव- निर्वात में भिन्न भिन्न तरंगदैर्ध्यो के लिये प्रभाव ज्ञात नहीं हुआ है। 1925 ई.. में रोज़ा ने सर्वप्रथम इसके प्रति विश्वास बताया, किंतु अर्वाचीन प्रयोगों ने इस विश्वास को निराधार बताया है।
सामर्थ्यवान चुंबकीय क्षेत्र का प्रभाव- 1940 ई. में बांवेल एवं फार ने 20,000 गाउस चुंबकीय क्षेत्र में से प्रकाशकिरणें भेजकर उनके वेग में 34 सेंमी. प्रति सेंकंड की वृद्धि पाई, किंतु इस फल की यथार्थता के बारे में शंका है।
सामर्थ्यंवान विद्युतीय क्षेत्र का प्रभाव- सन् 1952 में स्टार्क ने 1,000 किवा. प्रति सेंमी. विद्युतक्षेत्र से प्रकाशवेग में जरा सी वृद्धि पाई।
प्रकाशवेग नापने की विधियाँ- प्रकाशवेग नापने की विविध विधियों को निम्न मुख्य भागों में बाँटा जा सकता है। इनमें कुछ प्रत्यक्ष विधियाँ हैं तथा कुछ अप्रत्यक्ष।
(अ) अपार्थिव अथवा ज्योतिष विधियाँ इनमें (1) रोमर को उपग्रह ग्रहण विधि एवं (2) ब्रैडले को अपेरण विधि मुख्य हैं।
(ब) पार्थिव विधियाँ इनमें (1) फिजो (Fizeau) की दंतुरचक्र विधि, (2) फूको (Foucault) की घूर्ण दर्पण विधि ओर (3) माइकेलसन की अष्टकोण दर्पण विधि मुख्य हैं।
(स) वैद्युत प्रकाशिक विधियाँ इनमें कर सेल विधि और चाप वैद्युत प्रमुख हैं।
(द) वैद्युत विधियाँ ये प्राय: अप्रत्यक्ष विधियाँ हैं।
अपार्थिव विधियाँ
(1) रोमर की उपग्रह ग्रहण विधि- यह अब केवल ऐतिहासिक महत्व रखती है। चित्र 1. में बताए अनुसार जब पृथ्वी और बृहस्पति की स्थिति पृ1 और बृ1 पर रहती है, तब बृहस्पति के उपग्रहों के ग्रहण के अंतरकाल को मालूम कर लिया जाता है। लगभग छह महीने पश्चात् जब पृथ्व एवं बृहस्पति की स्थिति पृ2 और बृ2 पर क्रमश: होती है, तब फिर से इस अंतरकाल को मालूम कर लिया जाता है। बृहस्पति एवं पृथ्वी के बीच की दूरी बढ़ जाने के कारण ग्रहण का यह अंतरकाल बदल जाता है। इस परिवर्तन को एवं पृथ्वी की कक्षा के व्यास को मालूम कर प्रकाशवेग मालूम किया जाता है।
(2) ब्रैडले की अपेरण (Aberration) विधि- पृथ्वी सूर्य के चारों ओर प्राय: 18.5 मील प्रति सेकंड के वेग से घूमतल है। अतएव जब हम दूरबीन द्वारा किसी तारे को देखना चाहते हैं तब उसे सीधे तारे की ओर न रखकर, पृथ्वी की दिशा में कुछ झुकाना पड़ता है। यह प्रेक्षित दिशा यथार्थ दिशा नहीं होती है। इन दोनों दिशाओं के बीच के कोण को अपेरण कोण कहते हैं। इस कोण का मान एवं पृथ्वी का गमन वेग मालूम किया जाता है।
1725 ई. में ब्रैडले ने - ड्रेकोनिस तारे का अध्ययन कर प्रकाशवेग का मान 2.99,855 120 किमी. प्रति सेकंड निकाला। आपेक्षिकता सिद्धांत का जन्म होने में इस विधि का कुछ हाथ है।
(2) फीज़ो की दंतुरचक्र विधि- 1849 में एच. एल. फीजो ने सर्वप्रथम केवल पार्थिव उपकरणों से प्रकाशवेग को मालूम किया। इस विधि का सिद्धांत चित्र 2. से स्पष्ट होता है। पार्श्वनलिका के लेंस ले1 के संगम पर दीर्घ छिद्र अ है, जिसमें से होकर प्रकाश की किरणें अंदर आती हैं। फिर लेंस ले2 से वर्तित होकर 450 पर रखी गई काँच की पट्टिका प से परावर्तित होकर, दंतुरचक्र की खुली जगह फ पर संगमित होती है। चक्र को चित्र 3. में देखें। यही से निकलकर लेंस ले3 द्वारा समांतर होकर, ये किरणें 8,633 मीटर दूर जाकर लेंस ले4 द्वारा द पर अभिलंब गिरकर तथा परावर्तित हो, वापस उसी मार्ग से लौटती हैं। वापसी पर यदि ये दंतुरचक्र में से निकलने में समर्थ होती हैं, तो पट्टिका प से वर्तित होकर आँख पर प्रतिबिंब बनाती हैं :
चक्र को घुमाने से प्रतिबिंब चक्र का वेग इस प्रकार संतुलित किया जाए कि प्रतिबिंब स्फुरण (Flicker) करेगा। यदि चक्र का वेग इस प्रकार संतुलित किया जाए कि प्रतिबिंब लुप्त हो जाए, तो इसका अर्थ होगा कि प्रकाशकिरणों को फ से द तक जाकर वापस फ पर आने में जितना समय लगता है उतने में चक्र केवल एक खाली जगह से पासवाली बंद जगह तक घूम सका है। यदि फ और द के बीच की दूर दू (d) है, एवं म (m) दंतुरवाला चक्र एक सेकंड में न (द) चक्कर लगाता है, तो
प्रकाश का वेग उ 4 म न द [c = 4 mnd]
इस प्रकार फीज़ो ने प्रकाशवेग का मान 3,15,300 500 किमी. प्रति सेकंड निकाला। इसी विधि से कॉर्नु (Cornu) ने 1875 ई. में प्रकाशवेग 3,00,400 किमी. प्रति सेंकंड एवं 1906 ई. में पैराटिन ने 2,99,880 84 किमी. प्रति सेकंड निकाला।
(2) फूको की घूर्ण-दर्पण-विधि- दंतुरचक्र के स्थान पर फूको ने वेग से घूमनेवाले दर्पण का उपयोग किया। से चलनेवाली किरणें पट्टिका प से वर्तित होकर तथा र से परावर्तित होकर, दर्पण द पर अभिलंब गिरती हैं। अतएव उसी मार्ग से वापस लौटकर अ पर प्रतिबिंब बनाती हैं। यदि र वेग से घूम रहा हो, तो जितने समय में किरणें र से द तक जाकर वापस लौटेंगी, उतने समय में दर्पण र कोण से घूमेगा और इसलिये वापसी किरणें 2 कोण से विचलित होकर ब पर प्रतिबिंब बनाएँगी। अब को नापकर मालूम किया जाता है।
प्रकाश का वेग उ 4 न दू / [C = 4 nd / ]
यहाँ न (n) = दर्पण र के प्रति सेकंड चक्करों की संख्या है एवं दू (d) रद की दूरी है।
1962 ई. में फूको ने प्रकाश वेग (c) का मान 2,98,009 500 किमी. प्रति सेकंड निकाला। सन् 1878-82 के बीच माइकेलसन (Michelson) ने इसी प्रयोग द्वारा वेग का मान 2,99,828 किमी. प्रति सेंकंड निकाला तथा साइमन न्यूकम (Simon Newcomb) ने 2,99,778।
1. माइकेलसन की अष्टकोण दर्पण विधि सन् 1926 में किया गया हय प्रयोग अपनी यथार्थता के लिये प्रसिद्ध है।
22 मील दूरी पर पहाड़ की चोटी पर स्थित, माउंट विलसन तथा माउंट सेंट ऐंटोनियो को माइकेलसन ने अपने प्रयोग के लिये निर्धारित किया। र एक अष्टकोण दर्पण है। चित्र 5. में बातए अनुसार किरणें स से चलकर क्रमश: क, ख, ग से परावर्तित होकर द1 से परावर्तित होती हैं। यहाँ से समांतर चलकर, दूसरे स्टेशन पर स्थित द2 से परावर्तित होकर वापस अपने मार्ग पर लौटकर, पहले स्टेशन पर आती हैं। फिर ग , ख , क से परावर्तित होकर स1 पर प्रतिबिंब बनाती हैं। अष्टकोण दर्पण इतनी तेजी से घुमाया जाता है कि प्रतिबिंब स्थानांतरित न हो। यह तभी संभव होता है जब द1 से द2 जाकर वापस आने में किरणें जितना समय लगाती हैं, उतने समय में दर्पण र केवल 1/8 चक्कर ही लगाए। दर्पण के घूमने का वेग मालूम कर प्रकाशवेग मालूम किया जाता है। इसका मान 2,99,796 1 किमी. प्रति सेकंड निकला।
पौज़े एवं पीअरसन ने 1935 ई. में उपर्युक्त प्रयोग को निर्बात में दुहराया। उनके उपकरण एक मील लंबे नल में स्थित थे। अष्टकोण के स्थान पर इन्होंने 32 तलवाले दर्पण का उपयोग किया। उनके प्रकाशवेग का मान 2,99,774 11 किमी. प्रति सेकंड निकला।
(1) कर सेल (Kerr cell) विधि- घूमनेवाले दंतुरचक्र जैसा ही कर सेल एक वैद्युत प्रकाशिक कपाठ है। कर सेल में एक काँच के पात्र में धातु की दो समांतर पट्टियों के बीच में नाइट्रोबेंजीन द्रव भरते हैं। इसके दोनों ओर दो निकल (nicol) प्रिज्म इस स्थिति में रखते हैं कि सेल में से किरणें निकल नहीं सकती। किंतु यदि पहियों पर वैद्युत विभव लगाया जाए, तो द्रव में द्विवर्तन उत्पन्न होगा और अब निकल में से प्रकाश आ सकेगा। यदि उच्च आवृत्तिवाला वैद्युत विभव लगाया जाय, तो सेल प्रकाश को अधिकतम विभव पर जाने देगा और शून्य विभव पर रोक देगा। यदि प्रत्यावर्ती क्षेत्र की आवृत्ति 108 हो तो 2 108 बार प्रति सेकंड प्रकाश रुकेगा एवं जा सकेगा।
सन् 1926 ई. में कारोलुस (Karolus) एवं मिटलस्टैट (Mittelstaedt) ने इस कर सैल का उपयोग प्रकाश का वेग निकालने में किया। दोनों सेलों में वही प्रत्यावर्ती क्षेत्र लगाया गया है। इनके प्रकाशवेग का मान 2,99778 20 किमी. प्रति सेंकंड था।
ऐंडरसन (Anderson) ने सन् 1936-41 में उपर्युक्त प्रयोग में सुधार कर इसे 3,000 बार दुहराया। इनके अनुसार प्रकाशवेग का औसत मान 2,99776 4 किमी. प्रति सेकंड निकला। वर्गस्ट्रैंड ने भी (सन् 1949-51) इसी विधि का उपयोग कर प्रकाशवेग का मान 2,99,793.1 0.3 किमी. प्रति सेकंड निकाला।
चाप वैद्युत दोलक विधि- यदि क्वार्ट्ज को दो निकलों के बीच में रखकर उसपर प्रत्यावर्ती विद्युत क्षेत्र लगाया जाए, तो वह भी कर सैल जैसा कार्य करता है। यह बात कर और ग्रांट ने सन् 1927 में बताई। सन् 1938 में मैक किन्ले ने इसका उपयोग कर प्रकाशवेग का मान 2,99,780 70 किमी. प्रति सेकंड निकाला।
लुविग बर्गमैन ने 1937 ई. में बताया कि यदि क्वार्ट्ज पर उच्च आवृत्तिवाले प्रत्यावर्ती क्षेत्र को लगाया जाए, तो उसमें भी उच्च आवृत्तिवाले प्रत्यावर्ती क्षेत्र को लगाया जाए, तो उसमें भी उच्च आवृत्तिवाले दोलन उत्पन्न हो जाते हैं। उनमें बराबर दूरी पर निस्पंद तल बन जाते हैं उनमें बराबर दूरी पर निस्पंद तल बन जाते हैं और क्वार्ट्ज पट्टिका ग्रेटिंग बन जाती है। जब क्षेत्र उच्च होता है तब ग्रेटिंग बनती है और क्षेत्र शून्य होने पर वह नष्ट हो जाती है।
क्वार्ट्ज के उपर्युक्त गुण का उपयोग हाउस्टन ने 1941 एवं 1950 ई. में प्रकाशवेग निकालने के काम में किया (देखें चित्र 6.) प्रकाशकिरणें क्वार्ट्ज पट्टिका में से होकर द पर तभी गिरेंगी जब वह ग्रेटिंग जैसा कार्य कर रही हों। जितने समय में ये किरणें द पर वापस लौटेंगी उतने ही समय में यदि क पर पुन: ग्रेटिंग बन जाए तो किरणें उसमें से निकलकर ने पर प्रतिबिंब बनाएंगी, अन्यथा नहीं। इस प्रकार विद्युत क्षेत्र की आवृत्ति तथा कद के बीच की दूरी ज्ञात कर, हाउस्टन ने प्रकाशवेग का मान 2,99,775 9 किमी. प्रति सेकंड निकाला।
(1) विद्युच्चुंबकीय तथा स्थिरविद्युत मात्रकों के अनुपात द्वारा- सन् 1873 में मैक्सवेल ने प्रकाश को विद्युच्चुंबकीथ तरंग बताया और उसके वेग को विद्युच्चुंबकीय एवं स्थिर विद्युत मात्रकों के अनुपात के बराबर। विद्युत संबंधी विभिन्न परिमाणों को दोनों प्रकार के मात्रकों में आसानी से नापा जा सकता है।
(2) स्थावर तरंगों का तारों पर बनाना- विद्युच्चुंबकीय तरंगों की स्थावर तरंगें दो समांतर तारों पर बनाई जाती हैं। निस्पंद तलों के बीच की दूरी ज्ञात कर तरंगदैर्ध्य मालूम किया जाता है। फिर आवृत्तिकाल मालूम कर वेग मालूम हो जाता है। इस विधि से ब्लोंडेट तथा लेचर ने प्रकाशवेग का मान निकाला।
कैविटी रेजोनेटर (Cavity Resonator)- इसकी मदद से 1947 ई. में अकाशवेग का मान 2,99,792 4.5 किमी. प्रति सेकंड निकला। इसेन ने विधि को सुधार कर इस मान को 2,99,792.5 1 बताया। हन्सेन और बोल ने 1950 ई. में बहुत ही यथार्थ रूप से इस मान को 2,99,789.6 0.4 किमी. प्रति सेकंड निकाला।
(4) सूक्ष्म दैर्ध्य व्यतिकरणी- सन् 1950 में फ्रूम ने रेडार तरंगों की सहायता से प्रकाशवेग का मान 2,99,792.6 0.7 किमी. प्रति सेकंड निकाला और फिर सन् 1954 में इस मान को बदलकर 2,99,793.7 0.3 बताया।ओबौ और शौरन व्यवस्था का उपयोग दूरी नापने के लिये किया गया। 1947 ई. में जोन ने तथा 1949 और 1954 ई. में अलाक्सन ने इस विधि द्वारा प्रकाशवेग का मान 2,99,794.2 1.9 किमी. प्रति सेकंड निकाला।
(5) घूर्णन स्पेक्ट्रम- इसकी सहायता से आर्वाचीन काल में, अर्थात् सन् 1955 में, प्लायर, ब्लैन व कोनर ने मिलकर प्रकाशवेग का मान 2,99,789.8 03 किमी. प्रति सेंकंड निकाला।
इस प्रकार इन सब विधियों से निकाले हुए प्रकाशवेग के मानों का अध्ययन कर हम कह सकते हैं कि सबसे यथार्थ प्रकाशवेग मान 2,99,793.0 0.3 किमी. प्रति सेकंड है। (मधुकर गंगाधर भाठवडेकर)
प्रकाश के वेग का ठीक ठाक मान निकालना एक अत्यंत महत्वपूर्ण कार्य है, क्योंकि यह चुंबकीय एवं विद्युतीय घटनाओं का एक अभिन्न अंग है। जितने भी ऊर्जा के संचार के कार्य हैं, उनमें इसका उपयोग होता है। इन 300 वर्षो में प्रकाशवेग नापने के इतने भिन्न भिन्न प्रयत्न हुए हैं कि हम कह सकते हैं कि इसका मान 1/100 प्रति शत यथार्थता तक मालूम हो गया है।
प्रकाशवेग का, जिसके लिये ड़ चिह्न प्रयुक्त होता है, सही मान है 2,99,793.0±0.3 किमी. प्रति सेंकंड। स्थूल रूप से इसे 3 X1010 सेंमी. प्रति सेंकंड मान लिया जाता है।
एकवर्णी तरंग के वेग को कलावेग (Phase velocity) कहते हैं। यथार्थ में श्वेत प्रकाश एकवर्णी न होकर कई प्रकार की तरंगों से बनता है। यह झुंड जिस वेग से चलता है, उसे समूह वेग (Group velocity) कहते हैं। प्रकाश के वेग नापने की प्रत्यक्ष विधियाँ साधारणतया समूहवेग ही नापती हैं।
प्रकाश की तीव्रता का उसके वेग पर प्रभाव- 1904 ई. में डाउट ने तीव्रता को 1: 3,00,000 के अनुपात में बढ़ाकर बताया कि विभिन्न प्रकाशों के वेग में परिवर्तन 6 मिमी. प्रति सेकंड से भी कम होता है। यह नगण्य है।
तरंगदैर्ध्य का प्रभाव- निर्वात में भिन्न भिन्न तरंगदैर्ध्यो के लिये प्रभाव ज्ञात नहीं हुआ है। 1925 ई.. में रोज़ा ने सर्वप्रथम इसके प्रति विश्वास बताया, किंतु अर्वाचीन प्रयोगों ने इस विश्वास को निराधार बताया है।
सामर्थ्यवान चुंबकीय क्षेत्र का प्रभाव- 1940 ई. में बांवेल एवं फार ने 20,000 गाउस चुंबकीय क्षेत्र में से प्रकाशकिरणें भेजकर उनके वेग में 34 सेंमी. प्रति सेंकंड की वृद्धि पाई, किंतु इस फल की यथार्थता के बारे में शंका है।
सामर्थ्यंवान विद्युतीय क्षेत्र का प्रभाव- सन् 1952 में स्टार्क ने 1,000 किवा. प्रति सेंमी. विद्युतक्षेत्र से प्रकाशवेग में जरा सी वृद्धि पाई।
प्रकाशवेग नापने की विधियाँ- प्रकाशवेग नापने की विविध विधियों को निम्न मुख्य भागों में बाँटा जा सकता है। इनमें कुछ प्रत्यक्ष विधियाँ हैं तथा कुछ अप्रत्यक्ष।
(अ) अपार्थिव अथवा ज्योतिष विधियाँ इनमें (1) रोमर को उपग्रह ग्रहण विधि एवं (2) ब्रैडले को अपेरण विधि मुख्य हैं।
(ब) पार्थिव विधियाँ इनमें (1) फिजो (Fizeau) की दंतुरचक्र विधि, (2) फूको (Foucault) की घूर्ण दर्पण विधि ओर (3) माइकेलसन की अष्टकोण दर्पण विधि मुख्य हैं।
(स) वैद्युत प्रकाशिक विधियाँ इनमें कर सेल विधि और चाप वैद्युत प्रमुख हैं।
(द) वैद्युत विधियाँ ये प्राय: अप्रत्यक्ष विधियाँ हैं।
अपार्थिव विधियाँ
(1) रोमर की उपग्रह ग्रहण विधि- यह अब केवल ऐतिहासिक महत्व रखती है। चित्र 1. में बताए अनुसार जब पृथ्वी और बृहस्पति की स्थिति पृ1 और बृ1 पर रहती है, तब बृहस्पति के उपग्रहों के ग्रहण के अंतरकाल को मालूम कर लिया जाता है। लगभग छह महीने पश्चात् जब पृथ्व एवं बृहस्पति की स्थिति पृ2 और बृ2 पर क्रमश: होती है, तब फिर से इस अंतरकाल को मालूम कर लिया जाता है। बृहस्पति एवं पृथ्वी के बीच की दूरी बढ़ जाने के कारण ग्रहण का यह अंतरकाल बदल जाता है। इस परिवर्तन को एवं पृथ्वी की कक्षा के व्यास को मालूम कर प्रकाशवेग मालूम किया जाता है।
(2) ब्रैडले की अपेरण (Aberration) विधि- पृथ्वी सूर्य के चारों ओर प्राय: 18.5 मील प्रति सेकंड के वेग से घूमतल है। अतएव जब हम दूरबीन द्वारा किसी तारे को देखना चाहते हैं तब उसे सीधे तारे की ओर न रखकर, पृथ्वी की दिशा में कुछ झुकाना पड़ता है। यह प्रेक्षित दिशा यथार्थ दिशा नहीं होती है। इन दोनों दिशाओं के बीच के कोण को अपेरण कोण कहते हैं। इस कोण का मान एवं पृथ्वी का गमन वेग मालूम किया जाता है।
1725 ई. में ब्रैडले ने - ड्रेकोनिस तारे का अध्ययन कर प्रकाशवेग का मान 2.99,855 120 किमी. प्रति सेकंड निकाला। आपेक्षिकता सिद्धांत का जन्म होने में इस विधि का कुछ हाथ है।
पार्थिव विधियाँ
(2) फीज़ो की दंतुरचक्र विधि- 1849 में एच. एल. फीजो ने सर्वप्रथम केवल पार्थिव उपकरणों से प्रकाशवेग को मालूम किया। इस विधि का सिद्धांत चित्र 2. से स्पष्ट होता है। पार्श्वनलिका के लेंस ले1 के संगम पर दीर्घ छिद्र अ है, जिसमें से होकर प्रकाश की किरणें अंदर आती हैं। फिर लेंस ले2 से वर्तित होकर 450 पर रखी गई काँच की पट्टिका प से परावर्तित होकर, दंतुरचक्र की खुली जगह फ पर संगमित होती है। चक्र को चित्र 3. में देखें। यही से निकलकर लेंस ले3 द्वारा समांतर होकर, ये किरणें 8,633 मीटर दूर जाकर लेंस ले4 द्वारा द पर अभिलंब गिरकर तथा परावर्तित हो, वापस उसी मार्ग से लौटती हैं। वापसी पर यदि ये दंतुरचक्र में से निकलने में समर्थ होती हैं, तो पट्टिका प से वर्तित होकर आँख पर प्रतिबिंब बनाती हैं :
चक्र को घुमाने से प्रतिबिंब चक्र का वेग इस प्रकार संतुलित किया जाए कि प्रतिबिंब स्फुरण (Flicker) करेगा। यदि चक्र का वेग इस प्रकार संतुलित किया जाए कि प्रतिबिंब लुप्त हो जाए, तो इसका अर्थ होगा कि प्रकाशकिरणों को फ से द तक जाकर वापस फ पर आने में जितना समय लगता है उतने में चक्र केवल एक खाली जगह से पासवाली बंद जगह तक घूम सका है। यदि फ और द के बीच की दूर दू (d) है, एवं म (m) दंतुरवाला चक्र एक सेकंड में न (द) चक्कर लगाता है, तो
प्रकाश का वेग उ 4 म न द [c = 4 mnd]
इस प्रकार फीज़ो ने प्रकाशवेग का मान 3,15,300 500 किमी. प्रति सेकंड निकाला। इसी विधि से कॉर्नु (Cornu) ने 1875 ई. में प्रकाशवेग 3,00,400 किमी. प्रति सेंकंड एवं 1906 ई. में पैराटिन ने 2,99,880 84 किमी. प्रति सेकंड निकाला।
(2) फूको की घूर्ण-दर्पण-विधि- दंतुरचक्र के स्थान पर फूको ने वेग से घूमनेवाले दर्पण का उपयोग किया। से चलनेवाली किरणें पट्टिका प से वर्तित होकर तथा र से परावर्तित होकर, दर्पण द पर अभिलंब गिरती हैं। अतएव उसी मार्ग से वापस लौटकर अ पर प्रतिबिंब बनाती हैं। यदि र वेग से घूम रहा हो, तो जितने समय में किरणें र से द तक जाकर वापस लौटेंगी, उतने समय में दर्पण र कोण से घूमेगा और इसलिये वापसी किरणें 2 कोण से विचलित होकर ब पर प्रतिबिंब बनाएँगी। अब को नापकर मालूम किया जाता है।
प्रकाश का वेग उ 4 न दू / [C = 4 nd / ]
यहाँ न (n) = दर्पण र के प्रति सेकंड चक्करों की संख्या है एवं दू (d) रद की दूरी है।
1962 ई. में फूको ने प्रकाश वेग (c) का मान 2,98,009 500 किमी. प्रति सेकंड निकाला। सन् 1878-82 के बीच माइकेलसन (Michelson) ने इसी प्रयोग द्वारा वेग का मान 2,99,828 किमी. प्रति सेंकंड निकाला तथा साइमन न्यूकम (Simon Newcomb) ने 2,99,778।
1. माइकेलसन की अष्टकोण दर्पण विधि सन् 1926 में किया गया हय प्रयोग अपनी यथार्थता के लिये प्रसिद्ध है।
22 मील दूरी पर पहाड़ की चोटी पर स्थित, माउंट विलसन तथा माउंट सेंट ऐंटोनियो को माइकेलसन ने अपने प्रयोग के लिये निर्धारित किया। र एक अष्टकोण दर्पण है। चित्र 5. में बातए अनुसार किरणें स से चलकर क्रमश: क, ख, ग से परावर्तित होकर द1 से परावर्तित होती हैं। यहाँ से समांतर चलकर, दूसरे स्टेशन पर स्थित द2 से परावर्तित होकर वापस अपने मार्ग पर लौटकर, पहले स्टेशन पर आती हैं। फिर ग , ख , क से परावर्तित होकर स1 पर प्रतिबिंब बनाती हैं। अष्टकोण दर्पण इतनी तेजी से घुमाया जाता है कि प्रतिबिंब स्थानांतरित न हो। यह तभी संभव होता है जब द1 से द2 जाकर वापस आने में किरणें जितना समय लगाती हैं, उतने समय में दर्पण र केवल 1/8 चक्कर ही लगाए। दर्पण के घूमने का वेग मालूम कर प्रकाशवेग मालूम किया जाता है। इसका मान 2,99,796 1 किमी. प्रति सेकंड निकला।
पौज़े एवं पीअरसन ने 1935 ई. में उपर्युक्त प्रयोग को निर्बात में दुहराया। उनके उपकरण एक मील लंबे नल में स्थित थे। अष्टकोण के स्थान पर इन्होंने 32 तलवाले दर्पण का उपयोग किया। उनके प्रकाशवेग का मान 2,99,774 11 किमी. प्रति सेकंड निकला।
वैद्युत प्रकाशिक विधियाँ
(1) कर सेल (Kerr cell) विधि- घूमनेवाले दंतुरचक्र जैसा ही कर सेल एक वैद्युत प्रकाशिक कपाठ है। कर सेल में एक काँच के पात्र में धातु की दो समांतर पट्टियों के बीच में नाइट्रोबेंजीन द्रव भरते हैं। इसके दोनों ओर दो निकल (nicol) प्रिज्म इस स्थिति में रखते हैं कि सेल में से किरणें निकल नहीं सकती। किंतु यदि पहियों पर वैद्युत विभव लगाया जाए, तो द्रव में द्विवर्तन उत्पन्न होगा और अब निकल में से प्रकाश आ सकेगा। यदि उच्च आवृत्तिवाला वैद्युत विभव लगाया जाय, तो सेल प्रकाश को अधिकतम विभव पर जाने देगा और शून्य विभव पर रोक देगा। यदि प्रत्यावर्ती क्षेत्र की आवृत्ति 108 हो तो 2 108 बार प्रति सेकंड प्रकाश रुकेगा एवं जा सकेगा।
सन् 1926 ई. में कारोलुस (Karolus) एवं मिटलस्टैट (Mittelstaedt) ने इस कर सैल का उपयोग प्रकाश का वेग निकालने में किया। दोनों सेलों में वही प्रत्यावर्ती क्षेत्र लगाया गया है। इनके प्रकाशवेग का मान 2,99778 20 किमी. प्रति सेंकंड था।
ऐंडरसन (Anderson) ने सन् 1936-41 में उपर्युक्त प्रयोग में सुधार कर इसे 3,000 बार दुहराया। इनके अनुसार प्रकाशवेग का औसत मान 2,99776 4 किमी. प्रति सेकंड निकला। वर्गस्ट्रैंड ने भी (सन् 1949-51) इसी विधि का उपयोग कर प्रकाशवेग का मान 2,99,793.1 0.3 किमी. प्रति सेकंड निकाला।
चाप वैद्युत दोलक विधि- यदि क्वार्ट्ज को दो निकलों के बीच में रखकर उसपर प्रत्यावर्ती विद्युत क्षेत्र लगाया जाए, तो वह भी कर सैल जैसा कार्य करता है। यह बात कर और ग्रांट ने सन् 1927 में बताई। सन् 1938 में मैक किन्ले ने इसका उपयोग कर प्रकाशवेग का मान 2,99,780 70 किमी. प्रति सेकंड निकाला।
लुविग बर्गमैन ने 1937 ई. में बताया कि यदि क्वार्ट्ज पर उच्च आवृत्तिवाले प्रत्यावर्ती क्षेत्र को लगाया जाए, तो उसमें भी उच्च आवृत्तिवाले प्रत्यावर्ती क्षेत्र को लगाया जाए, तो उसमें भी उच्च आवृत्तिवाले दोलन उत्पन्न हो जाते हैं। उनमें बराबर दूरी पर निस्पंद तल बन जाते हैं उनमें बराबर दूरी पर निस्पंद तल बन जाते हैं और क्वार्ट्ज पट्टिका ग्रेटिंग बन जाती है। जब क्षेत्र उच्च होता है तब ग्रेटिंग बनती है और क्षेत्र शून्य होने पर वह नष्ट हो जाती है।
क्वार्ट्ज के उपर्युक्त गुण का उपयोग हाउस्टन ने 1941 एवं 1950 ई. में प्रकाशवेग निकालने के काम में किया (देखें चित्र 6.) प्रकाशकिरणें क्वार्ट्ज पट्टिका में से होकर द पर तभी गिरेंगी जब वह ग्रेटिंग जैसा कार्य कर रही हों। जितने समय में ये किरणें द पर वापस लौटेंगी उतने ही समय में यदि क पर पुन: ग्रेटिंग बन जाए तो किरणें उसमें से निकलकर ने पर प्रतिबिंब बनाएंगी, अन्यथा नहीं। इस प्रकार विद्युत क्षेत्र की आवृत्ति तथा कद के बीच की दूरी ज्ञात कर, हाउस्टन ने प्रकाशवेग का मान 2,99,775 9 किमी. प्रति सेकंड निकाला।
वैद्युत विधियाँ
(1) विद्युच्चुंबकीय तथा स्थिरविद्युत मात्रकों के अनुपात द्वारा- सन् 1873 में मैक्सवेल ने प्रकाश को विद्युच्चुंबकीथ तरंग बताया और उसके वेग को विद्युच्चुंबकीय एवं स्थिर विद्युत मात्रकों के अनुपात के बराबर। विद्युत संबंधी विभिन्न परिमाणों को दोनों प्रकार के मात्रकों में आसानी से नापा जा सकता है।
(2) स्थावर तरंगों का तारों पर बनाना- विद्युच्चुंबकीय तरंगों की स्थावर तरंगें दो समांतर तारों पर बनाई जाती हैं। निस्पंद तलों के बीच की दूरी ज्ञात कर तरंगदैर्ध्य मालूम किया जाता है। फिर आवृत्तिकाल मालूम कर वेग मालूम हो जाता है। इस विधि से ब्लोंडेट तथा लेचर ने प्रकाशवेग का मान निकाला।
कैविटी रेजोनेटर (Cavity Resonator)- इसकी मदद से 1947 ई. में अकाशवेग का मान 2,99,792 4.5 किमी. प्रति सेकंड निकला। इसेन ने विधि को सुधार कर इस मान को 2,99,792.5 1 बताया। हन्सेन और बोल ने 1950 ई. में बहुत ही यथार्थ रूप से इस मान को 2,99,789.6 0.4 किमी. प्रति सेकंड निकाला।
(4) सूक्ष्म दैर्ध्य व्यतिकरणी- सन् 1950 में फ्रूम ने रेडार तरंगों की सहायता से प्रकाशवेग का मान 2,99,792.6 0.7 किमी. प्रति सेकंड निकाला और फिर सन् 1954 में इस मान को बदलकर 2,99,793.7 0.3 बताया।ओबौ और शौरन व्यवस्था का उपयोग दूरी नापने के लिये किया गया। 1947 ई. में जोन ने तथा 1949 और 1954 ई. में अलाक्सन ने इस विधि द्वारा प्रकाशवेग का मान 2,99,794.2 1.9 किमी. प्रति सेकंड निकाला।
(5) घूर्णन स्पेक्ट्रम- इसकी सहायता से आर्वाचीन काल में, अर्थात् सन् 1955 में, प्लायर, ब्लैन व कोनर ने मिलकर प्रकाशवेग का मान 2,99,789.8 03 किमी. प्रति सेंकंड निकाला।
इस प्रकार इन सब विधियों से निकाले हुए प्रकाशवेग के मानों का अध्ययन कर हम कह सकते हैं कि सबसे यथार्थ प्रकाशवेग मान 2,99,793.0 0.3 किमी. प्रति सेकंड है। (मधुकर गंगाधर भाठवडेकर)
Hindi Title
विकिपीडिया से (Meaning from Wikipedia)
अन्य स्रोतों से
संदर्भ
1 -
2 -
2 -
बाहरी कड़ियाँ
1 -
2 -
3 -
2 -
3 -