यूरेनियम (Uranium) आवर्त सारणी की एक अंतर्वर्ती श्रेणी, ऐक्टिनाइड श्रेणी (actinide series),का तृतीय तत्व है। इस श्रेणी में आंतरिक इलेक्ट्रॉनीय परिकक्षा (5 परिकक्षा) के इलेक्ट्रॉन स्थान लेते हैं। प्रकृति में पाए गए तत्वों में यह सबसे गुरू तत्व है। कुछ समय पहले तक इस तत्व को छठे अंतर्वर्ती समूह का अंतिम तत्व माना जाता था। यूरेनियम के समस्थानिक और इनकी अर्धजीवन अवधियाँ निम्नांकित हैं:
प्राकृतिक स्रोतों से प्राप्त यूरेनियम में 238 समस्थानिक 99.28 प्रतिशत, 235 समस्थानिक 0.71 प्रतिशत और 234 समस्थानिक 0.006 उपस्थित रहते हैं।
यूरेनियम तत्व की खोज 1789 ई0 में क्लाप्रोट (Klaproth) द्वारा पिचब्लेंड नामक अयस्क से हुई। उसने नए तत्व का नाम कुछ वर्ष पहले ज्ञात यूरेनस ग्रह के आधार पर यूरेनियम रखा। इस खोज के 52 वर्ष पश्चात् पेलीगाट ने 1841 ई0 में यह प्रदर्शित किया कि क्लाप्रोट द्वारा खोजा गया पदार्थ यूरेनियम टेट्राक्लोराइड के पोटैशियम (K) द्वारा अपचयन से यूरेनियम धातु तैयार की।
1896 ई0 में हेनरी बेक्वरेल ने यूरेनियम में रेडियों ऐक्टिवता की खोज की। उसके अनुसंधानों से ज्ञात हुआ कि यह गुण यूरेनियम के सब यौगिकों में तथा कुछ अन्य अयस्कों में भी वर्तमान है। इन निरीक्षणें के फलस्वरूप ही पिचब्लेंड अयस्क से रेडियम की ऐतिहासिक खोज संभव हो सकी थी।
यूरेनियम पृथ्वी की संपूर्ण ऊपरी सतह पर फैला है। ऐसा अनुमान है कि पृथ्वी की पपड़ी में यूरेनियम की मात्रा लगभग 1014 टन है। इस प्रकार इसकी मात्रा लगभग 1 ग्राम शैल में 4x10-6 होगी। इसकी मात्रा अम्लीय शैल (जैसे ग्रैनाइट) में अधिक और क्षारीय शैल (जैसे बेसाल्ट) में कम रहती है। समुद्री जल में भी यूरेनियम उपस्थित है, यद्यपि समुद्री जल में इसकी मात्रा शैल में उपस्थित मात्रा का 1/2000वाँ भाग है। इतने विस्तार से फैले होने के पश्चात् भी इसके केवल दो मुख्य अयस्क ज्ञात हैं, एक पिचब्लेंड और दूसरा कॉर्नोटाइट। पिचब्लेंड गहरे नीले काले रंग का अयसक है, जिसमें यूरेनियम ऑक्साइड, यू3 औ7 (u3 o3), उपस्थित रहता है। कॉर्नोटाइट मुख्यत: पोटैशियम और यूरेनियम का जब्लि वैनेडेट, पोयू2 बै औ 12.3 हा2औ (k2 u2 v2 o12, 3H2 o) ज्ञात होता है। पिचब्लैंड अयस्क के मुख्य निक्षेप कांगों, अफ्रीका तथा कैनाडा में हैं। इनके अतिरिक्त चेकोस्लोवाकिया, ऑस्ट्रेलिया अमरीका, पूर्वी अफ्रीका, इंग्लैंड में भी यह अयस्क मिलता है। कॉर्नोटाइट अमरीका तथा ऑस्ट्रेलिया में पाया जाता है। भारत के बिहार प्रदेश में यूरेनियम के अयस्कों की खोज हुई है।
यूरेनिययम अयस्क पर अम्ल द्वारा अभिक्रिया करने से यूरेनियम घुल जाता है। तत्पश्चात् सोडियम कार्बोनेट तथा अन्य यौगिकों की अभिक्रिया से अशुद्धियाँ दूर की जाती हैं। अंत में यूरेनियम ऑक्साइड, यू3 औ8 (u3 o3) बनता है। ऑक्साइड का कार्बन द्वारा भट्टी में अपचयन हो सकता है। इस प्रकार प्राप्त धातु द्वारा यूरेनियम फ्लोराइड के उपचयन से प्राप्त होता है।
यूरेनियम चमकदार श्वेत रंग की धातु है। इसका संकेत यू (u), परमाणु संख्या 92, परमाणु भार 238.03, गलनांक 1,130 सें0, क्वथनांक अनुमानित 3,500 सें0, घनत्व 19.05 ग्राम प्रति घन सेंमी0, विद्युत् प्रतिरोधकता 32.76x109 ओहम् सेंमी0 तथा क्रिस्टल संरचना त्रिद्कि पार्श्व, कमरे के ताप पर।यूरेनियम सक्रिय तत्व है। पूर्ण अवस्था में यह स्वत: वायु में जल सकता है। इसके द्वारा जल का विघटन होकर हाइड्रोजन मुक्त होता है। यह ऑक्सीजन से 190 सें, क्लोरीन से 180सें0, ब्रोमीन से 210 सें0, आयोडीन से 260सें और हाईड्रोजन से 250 सें0 पर क्रिया कर यौगिक बनाता है। इनके अतिरिक्त यूरेनियम नाइट्रोजन, कार्बन डाइऑक्साइड, कार्बन मोनोऑक्साइड एवं अनेक गैसों से अभिक्रिया करता है। अम्लों से क्रिया कर यूरेनियम के त्रिसंयोंजक एवं चतुस्संयोजक यौगिक बनते हैं तथा हाइड्रोजन मुक्त होती है।
यूरेनियम की 5 संयोजकताएँ हैं। इसकी मुख्य संयोजकताएँ 4 और 6 हैं। यूरेनियम के लवण बड़ी सरलता से जटिल आयन बनाते हैं। यौगिक- इसके निम्नलिखित यौगिक हैं:
यूरेनियम औक्साइड यूरेनियम के पाँच औक्साइड ज्ञात हैं।
यदि किसी यूरेनियम औक्साइड का 700 सें0 ताप पर वायु में दहन किया जाय तो यू3 औ8 (U3 O3) बनता है। यूरेनिल नाइट्रेट के 300 सें0 पर ऊष्मा विघटन से यू औ3 (UO3) का निर्माण होगा। यू औ3 (UO3) के अनेक क्रिस्टलीय रूपांतरण (crystal modifications) हैं। सकइ 500 सें0 ताप पर यू औ3 (UO3) का हाइड्रोजन द्वारा अपचयन किया जाय, तो यू औ2 (UO2) बन जायगा। यूरेनियम के समस्त ऑक्साइड नाइट्रिक अम्ल में घुलकर यूरेनिल नाइट्रेट बनाते हैं।
यूरेनिययम हाइड्राइड- यूरेनियम धातु हाइड्रोजन से लगभग 250 सें0 ताप पर क्रिया कर यूरेनियम हाइड्राइउ, यू हा3 श्(UH3), बनाता है। अधिक ताप पर इस हाइड्राइड, का विघटन हो जाता है। यूरेनियम हाइड्राइड के उच्च ताप पर विघटन से चूर्ण यूरेनियम प्राप्त होता है। इस कारण इस हाइड्राइड द्वारा क्रियाशील यूरेनियम चूर्ण बनाया जाता है।
यूरेनियम कार्बाइड- यूरेनियम के दो कार्बाइड ज्ञात हैं। ये कार्बन और द्रव यूरेनियम की अभिक्रिया द्वारा बनाए जाते हैं। कार्बन मोनोऑक्साइड और यूरेनियम धातु की उच्च ताप पर अभिक्रिया द्वारा भी यह बन सकते हैं।
यूरेनियम नाईट्राइड- नाइट्रोजन के साथ प्रतिक्रिया कर यूरेनियम अनेक यौगिक बनाता है, जिनमें सबसे सरल यूरेनियम मोनोनाइट्राइड, यू ना (UN)है।
यूरेनियम हैलाइड- यूरेनियम अनेक हैलाइड बनाता है। इसके सात फ्लोराइड, चार क्लोराइड, दो ब्रोमाइड और दो आयोडाइड ज्ञात हैं।
यूरेनियम के अन्य हैलाइड यौगिक तत्वों की अभिक्रिया, अथवा हाइड्राइड पर हेलोजन अम्ल की क्रिया, द्वारा बनाए जा सकते हैं।
नाभिक ऊर्जा युग के पहले यूरेनियम के अधिक उपयोग न थे। इसका उपयोग कुछ विशेष प्रकार के तंतुओं में होता था। इसके लवण रेशम को रंगने का कार्य करते हैं। सोडियम डाइयूरेनेट का उपयोग पोर्सलीन के बरतनों को रंगने में हुआ है।
परमाणु ऊर्जा प्रयोगों के कारण यूरेनियम अत्यधिक उपयोगी तत्व हो गया है। इसका उपयोग नाभिक श्रंखला प्रतिक्रिया में हुआ है। इस क्रिया में 235 भार संख्या वाला समस्थानिक उपयोगी सिद्ध हुआ है। अनियंत्रित अवस्था में इस क्रिया द्वारा भयंकर विस्फोट हो सकता है, जैसा कि परमाणु बमों में हुआ है, परंतु नियंत्रित रूप में आता है। कुछ रिऐक्टर (atomic reactor) चलाने के काम आता है। कुछ रिऐक्टरों में साधारण यूरेनियम (जिसमें 235 समस्थानिक 0.71 प्रतिशत हो) उपयोग में लाया जाता है, परंतु अनेक रिऐक्टरों में समृद्ध यूरेनियम (enriched uranium) काम में लाते हैं। इसमें 235 समस्थानिक का प्रतिशत बढ़ा देते हैं। इन क्रियाओं में यूरेनियम नाभिक के न्यूट्रॉन का आक्रमण द्वारा विखंडन (fission) हो जाता हैश् और न्यूट्रॉन भी मुक्त होते है, जिनसे श्रृखंला चलती है।
12यूरेनियम235 + न्यूट्रॉन विखंडित पदार्थ न्यूटॉन ऊर्जा साथ में उपस्थित यूरेनियम 238 समस्थानिक पर न्यट्रॉन प्रतिक्रिया द्वारा एक नया तत्व प्लूटोनियम, प्लू (Pu), बनता है, जिसमें यूरेनियम 235 वाले खंडनीय गुण वर्तमान हैं।
12यूरेनियम238 न्यूटॉन 12यूरेनियम239 नेपच्थूनियम239 94 प्लूटोनियम239
इस प्रकार 238 समस्थानिक भी ऊर्जाशीलश् पदार्थ में परिवर्तित हो सकता है।
अब यह भी ज्ञात है कि अति उच्च ताप पर तीव्र नयूट्रॉनों के आक्रमण द्वारा यूरेनियम 238 समस्थानिक का भी खंडन हो सकता है। इस क्रिया का उपयोग आजकल अनेक कथित तापनाभिकीय (thermonuclear) बमों में हुआ है। रमेशचंद्र कपूर
प्राकृतिक स्रोतों से प्राप्त यूरेनियम में 238 समस्थानिक 99.28 प्रतिशत, 235 समस्थानिक 0.71 प्रतिशत और 234 समस्थानिक 0.006 उपस्थित रहते हैं।
इतिहास-
यूरेनियम तत्व की खोज 1789 ई0 में क्लाप्रोट (Klaproth) द्वारा पिचब्लेंड नामक अयस्क से हुई। उसने नए तत्व का नाम कुछ वर्ष पहले ज्ञात यूरेनस ग्रह के आधार पर यूरेनियम रखा। इस खोज के 52 वर्ष पश्चात् पेलीगाट ने 1841 ई0 में यह प्रदर्शित किया कि क्लाप्रोट द्वारा खोजा गया पदार्थ यूरेनियम टेट्राक्लोराइड के पोटैशियम (K) द्वारा अपचयन से यूरेनियम धातु तैयार की।
1896 ई0 में हेनरी बेक्वरेल ने यूरेनियम में रेडियों ऐक्टिवता की खोज की। उसके अनुसंधानों से ज्ञात हुआ कि यह गुण यूरेनियम के सब यौगिकों में तथा कुछ अन्य अयस्कों में भी वर्तमान है। इन निरीक्षणें के फलस्वरूप ही पिचब्लेंड अयस्क से रेडियम की ऐतिहासिक खोज संभव हो सकी थी।
उपस्थिति-
यूरेनियम पृथ्वी की संपूर्ण ऊपरी सतह पर फैला है। ऐसा अनुमान है कि पृथ्वी की पपड़ी में यूरेनियम की मात्रा लगभग 1014 टन है। इस प्रकार इसकी मात्रा लगभग 1 ग्राम शैल में 4x10-6 होगी। इसकी मात्रा अम्लीय शैल (जैसे ग्रैनाइट) में अधिक और क्षारीय शैल (जैसे बेसाल्ट) में कम रहती है। समुद्री जल में भी यूरेनियम उपस्थित है, यद्यपि समुद्री जल में इसकी मात्रा शैल में उपस्थित मात्रा का 1/2000वाँ भाग है। इतने विस्तार से फैले होने के पश्चात् भी इसके केवल दो मुख्य अयस्क ज्ञात हैं, एक पिचब्लेंड और दूसरा कॉर्नोटाइट। पिचब्लेंड गहरे नीले काले रंग का अयसक है, जिसमें यूरेनियम ऑक्साइड, यू3 औ7 (u3 o3), उपस्थित रहता है। कॉर्नोटाइट मुख्यत: पोटैशियम और यूरेनियम का जब्लि वैनेडेट, पोयू2 बै औ 12.3 हा2औ (k2 u2 v2 o12, 3H2 o) ज्ञात होता है। पिचब्लैंड अयस्क के मुख्य निक्षेप कांगों, अफ्रीका तथा कैनाडा में हैं। इनके अतिरिक्त चेकोस्लोवाकिया, ऑस्ट्रेलिया अमरीका, पूर्वी अफ्रीका, इंग्लैंड में भी यह अयस्क मिलता है। कॉर्नोटाइट अमरीका तथा ऑस्ट्रेलिया में पाया जाता है। भारत के बिहार प्रदेश में यूरेनियम के अयस्कों की खोज हुई है।
यूरेनिययम अयस्क पर अम्ल द्वारा अभिक्रिया करने से यूरेनियम घुल जाता है। तत्पश्चात् सोडियम कार्बोनेट तथा अन्य यौगिकों की अभिक्रिया से अशुद्धियाँ दूर की जाती हैं। अंत में यूरेनियम ऑक्साइड, यू3 औ8 (u3 o3) बनता है। ऑक्साइड का कार्बन द्वारा भट्टी में अपचयन हो सकता है। इस प्रकार प्राप्त धातु द्वारा यूरेनियम फ्लोराइड के उपचयन से प्राप्त होता है।
गुणधर्म-
यूरेनियम चमकदार श्वेत रंग की धातु है। इसका संकेत यू (u), परमाणु संख्या 92, परमाणु भार 238.03, गलनांक 1,130 सें0, क्वथनांक अनुमानित 3,500 सें0, घनत्व 19.05 ग्राम प्रति घन सेंमी0, विद्युत् प्रतिरोधकता 32.76x109 ओहम् सेंमी0 तथा क्रिस्टल संरचना त्रिद्कि पार्श्व, कमरे के ताप पर।यूरेनियम सक्रिय तत्व है। पूर्ण अवस्था में यह स्वत: वायु में जल सकता है। इसके द्वारा जल का विघटन होकर हाइड्रोजन मुक्त होता है। यह ऑक्सीजन से 190 सें, क्लोरीन से 180सें0, ब्रोमीन से 210 सें0, आयोडीन से 260सें और हाईड्रोजन से 250 सें0 पर क्रिया कर यौगिक बनाता है। इनके अतिरिक्त यूरेनियम नाइट्रोजन, कार्बन डाइऑक्साइड, कार्बन मोनोऑक्साइड एवं अनेक गैसों से अभिक्रिया करता है। अम्लों से क्रिया कर यूरेनियम के त्रिसंयोंजक एवं चतुस्संयोजक यौगिक बनते हैं तथा हाइड्रोजन मुक्त होती है।
यूरेनियम की 5 संयोजकताएँ हैं। इसकी मुख्य संयोजकताएँ 4 और 6 हैं। यूरेनियम के लवण बड़ी सरलता से जटिल आयन बनाते हैं। यौगिक- इसके निम्नलिखित यौगिक हैं:
यूरेनियम औक्साइड यूरेनियम के पाँच औक्साइड ज्ञात हैं।
यदि किसी यूरेनियम औक्साइड का 700 सें0 ताप पर वायु में दहन किया जाय तो यू3 औ8 (U3 O3) बनता है। यूरेनिल नाइट्रेट के 300 सें0 पर ऊष्मा विघटन से यू औ3 (UO3) का निर्माण होगा। यू औ3 (UO3) के अनेक क्रिस्टलीय रूपांतरण (crystal modifications) हैं। सकइ 500 सें0 ताप पर यू औ3 (UO3) का हाइड्रोजन द्वारा अपचयन किया जाय, तो यू औ2 (UO2) बन जायगा। यूरेनियम के समस्त ऑक्साइड नाइट्रिक अम्ल में घुलकर यूरेनिल नाइट्रेट बनाते हैं।
यूरेनिययम हाइड्राइड- यूरेनियम धातु हाइड्रोजन से लगभग 250 सें0 ताप पर क्रिया कर यूरेनियम हाइड्राइउ, यू हा3 श्(UH3), बनाता है। अधिक ताप पर इस हाइड्राइड, का विघटन हो जाता है। यूरेनियम हाइड्राइड के उच्च ताप पर विघटन से चूर्ण यूरेनियम प्राप्त होता है। इस कारण इस हाइड्राइड द्वारा क्रियाशील यूरेनियम चूर्ण बनाया जाता है।
यूरेनियम कार्बाइड- यूरेनियम के दो कार्बाइड ज्ञात हैं। ये कार्बन और द्रव यूरेनियम की अभिक्रिया द्वारा बनाए जाते हैं। कार्बन मोनोऑक्साइड और यूरेनियम धातु की उच्च ताप पर अभिक्रिया द्वारा भी यह बन सकते हैं।
यूरेनियम नाईट्राइड- नाइट्रोजन के साथ प्रतिक्रिया कर यूरेनियम अनेक यौगिक बनाता है, जिनमें सबसे सरल यूरेनियम मोनोनाइट्राइड, यू ना (UN)है।
यूरेनियम हैलाइड- यूरेनियम अनेक हैलाइड बनाता है। इसके सात फ्लोराइड, चार क्लोराइड, दो ब्रोमाइड और दो आयोडाइड ज्ञात हैं।
यूरेनियम के अन्य हैलाइड यौगिक तत्वों की अभिक्रिया, अथवा हाइड्राइड पर हेलोजन अम्ल की क्रिया, द्वारा बनाए जा सकते हैं।
उपयोग-
नाभिक ऊर्जा युग के पहले यूरेनियम के अधिक उपयोग न थे। इसका उपयोग कुछ विशेष प्रकार के तंतुओं में होता था। इसके लवण रेशम को रंगने का कार्य करते हैं। सोडियम डाइयूरेनेट का उपयोग पोर्सलीन के बरतनों को रंगने में हुआ है।
परमाणु ऊर्जा प्रयोगों के कारण यूरेनियम अत्यधिक उपयोगी तत्व हो गया है। इसका उपयोग नाभिक श्रंखला प्रतिक्रिया में हुआ है। इस क्रिया में 235 भार संख्या वाला समस्थानिक उपयोगी सिद्ध हुआ है। अनियंत्रित अवस्था में इस क्रिया द्वारा भयंकर विस्फोट हो सकता है, जैसा कि परमाणु बमों में हुआ है, परंतु नियंत्रित रूप में आता है। कुछ रिऐक्टर (atomic reactor) चलाने के काम आता है। कुछ रिऐक्टरों में साधारण यूरेनियम (जिसमें 235 समस्थानिक 0.71 प्रतिशत हो) उपयोग में लाया जाता है, परंतु अनेक रिऐक्टरों में समृद्ध यूरेनियम (enriched uranium) काम में लाते हैं। इसमें 235 समस्थानिक का प्रतिशत बढ़ा देते हैं। इन क्रियाओं में यूरेनियम नाभिक के न्यूट्रॉन का आक्रमण द्वारा विखंडन (fission) हो जाता हैश् और न्यूट्रॉन भी मुक्त होते है, जिनसे श्रृखंला चलती है।
12यूरेनियम235 + न्यूट्रॉन विखंडित पदार्थ न्यूटॉन ऊर्जा साथ में उपस्थित यूरेनियम 238 समस्थानिक पर न्यट्रॉन प्रतिक्रिया द्वारा एक नया तत्व प्लूटोनियम, प्लू (Pu), बनता है, जिसमें यूरेनियम 235 वाले खंडनीय गुण वर्तमान हैं।
12यूरेनियम238 न्यूटॉन 12यूरेनियम239 नेपच्थूनियम239 94 प्लूटोनियम239
इस प्रकार 238 समस्थानिक भी ऊर्जाशीलश् पदार्थ में परिवर्तित हो सकता है।
अब यह भी ज्ञात है कि अति उच्च ताप पर तीव्र नयूट्रॉनों के आक्रमण द्वारा यूरेनियम 238 समस्थानिक का भी खंडन हो सकता है। इस क्रिया का उपयोग आजकल अनेक कथित तापनाभिकीय (thermonuclear) बमों में हुआ है। रमेशचंद्र कपूर
Hindi Title
विकिपीडिया से (Meaning from Wikipedia)
अन्य स्रोतों से
संदर्भ
1 -
2 -
2 -
बाहरी कड़ियाँ
1 -
2 -
3 -
2 -
3 -